Turkish PoS Tagging by Reducing Sparsity with Morpheme Tags in Small Datasets
نویسندگان
چکیده
Sparsity is one of the major problems in natural language processing. The problem becomes even more severe in agglutinating languages that are highly prone to be inflected. We deal with sparsity in Turkish by adopting morphological features for part-of-speech tagging. We learn inflectional and derivational morpheme tags in Turkish by using conditional random fields (CRF) and we employ the morpheme tags in part-of-speech (PoS) tagging by using hidden Markov models (HMMs) to mitigate sparsity. Results show that using morpheme tags in PoS tagging helps alleviate the sparsity in emission probabilities. Our model outperforms other hidden Markov model based PoS tagging models for small training datasets in Turkish. We obtain an accuracy of 94.1% in morpheme tagging and 89.2% in PoS tagging on a 5K training dataset.
منابع مشابه
بررسی مقایسهای تأثیر برچسبزنی مقولات دستوری بر تجزیه در پردازش خودکار زبان فارسی
In this paper, the role of Part-of-Speech (POS) tagging for parsing in automatic processing of the Persian language is studied. To this end, the impact of the quality of POS tagging as well as the impact of the quantity of information available in the POS tags on parsing are studied. To reach the goals, three parsing scenarios are proposed and compared. In the first scenario, the parser assigns...
متن کاملJoint PoS Tagging and Stemming for Agglutinative Languages
The number of word forms in agglutinative languages is theoretically infinite and this variety in word forms introduces sparsity in many natural language processing tasks. Part-of-speech tagging (PoS tagging) is one of these tasks that often suffers from sparsity. In this paper, we present an unsupervised Bayesian model using Hidden Markov Models (HMMs) for joint PoS tagging and stemming for ag...
متن کاملGeneralized unknown morpheme guessing for hybrid POS tagging of Korean
Most of errors in Korean morphological analysis and POS (Part-of-Speech) tagging are caused by unknown morphemes. This paper presents a generalized unknown morpheme handling method with P OSTAG (POStech TAGger) which is a statistical/rule based hybrid POS tagging system. The generalized unknown morpheme guessing is based on a combination of a morpheme pattern dictionary which encodes general le...
متن کاملSyllable-Pattern-Based Unknown-Morpheme Segmentation and Estimation for Hybrid Part-of-Speech Tagging of Korean
Most errors in Korean morphological analysis and part-of-speech (POS) tagging are caused by unknown morphemes. This paper presents a syllable-pattern-based generalized unknownmorpheme-estimation method with POSTAG (POStech TAGger), which is a statistical and rule-based hybrid POS tagging system. This method of guessing unknown morphemes is based on a combination of a morpheme pattern dictionary...
متن کاملUzbek-English and Turkish-English Morpheme Alignment Corpora
Morphologically-rich languages pose problems for machine translation (MT) systems, including word-alignment errors, data sparsity and multiple affixes. Current alignment models at word-level do not distinguish words and morphemes, thus yielding low-quality alignment and subsequently affecting end translation quality. Models using morpheme-level alignment can reduce the vocabulary size of morpho...
متن کامل